Provably Weak Instances of Ring-LWE Revisited

نویسندگان

  • Wouter Castryck
  • Ilia Iliashenko
  • Frederik Vercauteren
چکیده

In CRYPTO 2015, Elias, Lauter, Ozman and Stange described an attack on the non-dual decision version of the ring learning with errors problem (RLWE) for two special families of defining polynomials, whose construction depends on the modulus q that is being used. For particularly chosen error parameters, they managed to solve nondual decision RLWE given 20 samples, with a success rate ranging from 10% to 80%. In this paper we show how to solve the search version for the same families and error parameters, using only 7 samples with a success rate of 100%. Moreover our attack works for every modulus q′ instead of the q that was used to construct the defining polynomial. The attack is based on the observation that the RLWE error distribution for these families of polynomials is very skewed in the directions of the polynomial basis. For the parameters chosen by Elias et al. the smallest errors are negligible and simple linear algebra suffices to recover the secret. But enlarging the error paremeters makes the largest errors wrap around, thereby turning the RLWE problem unsuitable for cryptographic applications. These observations also apply to dual RLWE, but do not contradict the seminal work by Lyubashevsky, Peikert and Regev.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Provably Weak Instances of Ring-LWE

The ring and polynomial learning with errors problems (Ring-LWE and Poly-LWE) have been proposed as hard problems to form the basis for cryptosystems, and various security reductions to hard lattice problems have been presented. So far these problems have been stated for general (number) rings but have only been closely examined for cyclotomic number rings. In this paper, we state and examine t...

متن کامل

A Generator for LWE and Ring-LWE Instances

We introduce software for the generation of instances of the LWE and Ring-LWE problems, allowing both the generation of generic instances and also particular instances closely-related to those arising from cryptomania proposals in the literature. Our goal is to allow researchers to attack different instances in order to assess the practical hardness of LWE and Ring-LWE. This will in turn give i...

متن کامل

A New Ring-Based SPHF and PAKE Protocol On Ideal Lattices

emph{ Smooth Projective Hash Functions } ( SPHFs ) as a specific pattern of zero knowledge proof system are fundamental tools to build many efficient cryptographic schemes and protocols. As an application of SPHFs, emph { Password - Based Authenticated Key Exchange } ( PAKE ) protocol is well-studied area in the last few years. In 2009, Katz and Vaikuntanathan described the first lattice-based ...

متن کامل

How (Not) to Instantiate Ring-LWE

The learning with errors over rings (Ring-LWE) problem—or more accurately, family of problems— has emerged as a promising foundation for cryptography due to its practical efficiency, conjectured quantum resistance, and provable worst-case hardness: breaking certain instantiations of Ring-LWE is at least as hard as quantumly approximating the Shortest Vector Problem on any ideal lattice in the r...

متن کامل

LP Solutions of Vectorial Integer Subset Sums - Cryptanalysis of Galbraith's Binary Matrix LWE

We consider Galbraith’s space efficient LWE variant, where the (m × n)-matrix A is binary. In this binary case, solving a vectorial subset sum problem over the integers allows for decryption. We show how to solve this problem using (Integer) Linear Programming. Our attack requires only a fraction of a second for all instances in a regime for m that cannot be attacked by current lattice algorith...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016